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Abstract

The Borrelia burgdorferi sensu lato (s.l.) group comprises genetically related spirochetes, mostly associated with
tick species belonging to the Ixodes ricinus complex in the Northern Hemisphere. The present study evaluated
borrelial infection in the tick Ixodes pararicinus, which is the only representative species of the I. ricinus complex in
Uruguay. A total of 137 I pararicinus ticks were collected from deer, cattle, or vegetation in 2 Uruguayan
Departments. A part of these ticks was tested directly by PCR targeting the borrelial gene flagellin (fla), whereas
another part of the ticks was inoculated into Barbour-Stoenner—Kelly (BSK)-H medium in an attempt to isolate
Borrelia. Overall, Borrelia infection was detected in 9 males and 1 nymphal tick pool. These ticks were found to be
infected by unique fla haplotypes, which were shown through phylogenetic analysis to represent possibly 2 new
B. burgdorferi s.l. genospecies, 1 associated with B. bissettii, the other phylogenetically closest to B. americana.
These results were reinforced by PCR and DNA sequencing analyses of portions of 2 additional borrelial genes,
rrfA-rrlB intergenic spacer region (IGS) and 165 rDNA (rrs). Weekly examinations of BSK cultures by dark-field
microscopy failed to demonstrate live Borrelia through a 100-day incubation period. However, Borrelia DNA was
detected by fla-PCR in culture media from 2 vials up to 90 days after inoculation. To the best of our knowledge,
this is the first report of B. burgdorferi s.1. infecting ticks in South America.

Key Words: Borrelia burgdorferi—Ixodes pararicinus—Tick—Uruguay— South America.

Introduction B. americana, B. andersoni, B. californiensis, B. carolinensis,
B. finlandensis, B. japonica, B. kurtenbachii, B. sinica, B. tanukii,
B. turdae, and B. yangtze (Margos et al. 2010, Casjens et al.
2011, Stanek and Reiter 2011). All of these genospecies are

considered to be established between ixodid ticks and verte-

THE BORRELIA BURGDORFERI SENSU LATO (s.1.) group com-
prises at least 19 genospecies of genetically related spi-
rochetes, all associated with ixodid ticks, mostly within the

genus Ixodes (Scott et al. 2010, 2012, Stanek and Reiter 2011,
Stanek et al. 2012). Among these genospecies, B. burgdorferi
sensu stricto (s.s.), B. afzelii, and B. garinii are the major etio-
logical agents of Lyme disease or Lyme borreliosis, the most
common tick-borne zoonosis in the temperate zones of the
Northern Hemisphere (Margos et al. 2010, Stanek et al. 2012).
Additional pathogenic genospecies that have been less com-
monly associated with human infection are B. spielmanii,
B. bavariensis, B. bissettii, B. lusitaniae, and B. valaisiana (Stanek
et al. 2012). Other genospecies of unknown pathogenicity are

brate hosts in the Northern Hemisphere, whereas the only
convincing report of B. burgdorferi s.1. infecting ticks in the
southern hemisphere refers to B. garinii infecting the tick
Ixodes uriae infesting seabird colonies of Campbell Island
(New Zealand) and Crozet Islands (Olsen et al. 1995, Gylfe
et al. 1999). Regarding South America, no B. burgdorferi s.1.
genospecies has ever been reported infecting ticks in the
continent or its coastal islands.

The ecology, global distribution, and phylogeny of spiro-
chetes comprising the B. burgdorferi s.1. group are inexorably
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related to the biology of their natural hosts and vectors, which
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Molecular analysis for Borrelia

Ethanol-preserved ticks were left at room temperature
for a minimum of 30min for ethanol evaporation and
subjected individually to DNA extraction by the guanidine
isothiocynate—phenol technique (Sangioni et al. 2005). They
were tested for the presence of Borrelian DNA by nested-PCR
targeting the flagellin gene (fla) of Borrelia spp. using primers
FlaLL (5-ACA TAT TCA GAT GCA GAC AGA GGT-3) and
FLA RL (5-GCA ATC ATA GCC ATT GCA GAT TGT-3) for
the first reaction, and primers FlaLS (5-AAC AGC TGA AGA
GCT TGG AAT G-3’) and FLA RS (5-CTT TGA TCA CTT
ATC ATT CTA ATA GC-3’) for the nested reaction. The first
reaction targets a 665-bp fragment, and the nested reaction
targets a 354-bp fragment. PCR conditions were adopted as
described elsewhere (Barbour et al. 1996). Ticks positive by
the fla gene PCR were further tested by 2 additional PCR
protocols, 1 targeting a 225- to 255-bp fragment of the r+fA-
rrlB intergenic spacer region (IGS) using primers IGSb (5-GTT
AAG CTC TTA TTC GCT GAT GGT A-3") and IGSa (5"-CGA
CCT TCT TCG CCT TAA AGC-3’), as previously described
(Derdakova et al. 2003); and another protocol targeting a 746-bp
of the 16S rDNA (rrs) using primers S5-F (5-GAG GAA TAA
GCT TTG TAG GA-3) and S13-R (5-GAC GTC ATC CTC ACC
TTC CT-3’) (Le Fleche et al. 1997). For all PCR reactions, water
was included as negative control, and Borrelia anserina DNA
(Ataliba et al. 2007) was included as positive control. PCR
products were purified using ExoSAP (USB Corporation, Cle-
veland, OH), and submitted to DNA sequencing in an automatic
sequencer (Applied Biosystems/PerkinElmer, Foster City, CA)
according to the manufacturer’s protocol. DNA sequences were
aligned and compared to each other by using EditSeq and
MegAlign sequence tools (DNASTAR, Madison, WI), and also
compared to corresponding sequences in GenBank through
BLAST analyses (www.ncbi.nlm.nih.gov/blast/).

Attempts to isolate Borrelia

Ticks brought alive to the laboratory were surface-steril-
ized through immersion in iodine/70% ethanol for 10-15 min
and rinsed with sterile phosphate-buffered saline (PBS). In-
dividual (females) or pooled (5-6 males or nymphs) ticks were
minced and placed directly into tubes containing 4mL of
Barbour—Stoenner—Kelly (BSK)-H medium, complete (Sigma-
Aldrich, St. Louis, MO), supplemented with kanamycin
(100 ug/mL) and amphotericin B (2.5 ug/mL). The cultures
were incubated at 34°C for 100 days and examined weekly by
dark-field microscopy for the presence of live spirochetes. In
addition, 1-mL aliquots of culture medium were taken off
from all tubes 15 days after inoculation, and divided into
0.5mL for a blind passage into new tubes containing BSK-H
medium without antibiotics, and 0.5 mL for DNA extraction
by washing through centrifugation and boiling at 100°C for
10 min. New DNA extracts were generated from the original
tick-inoculated tubes at 30, 45, and 90 days after inoculation,
and from the passage tubes at 15, 30, and 75 days after being
inoculated. These DNA extracts were submitted to the same
PCR and DNA sequencing protocols described above.

Phylogenetic analysis

Partial sequences of the Borrelia fla gene generated in the
present study were aligned by the ClustalX (Thompson et al.

149

1997) and manually refined by Genedoc (Nicholas et al. 1997)
with corresponding B. burgdorferi s.1. sequences available in
GenBank. The created alignment included 45 different se-
quences (408 bp). Sequences from Borrelia hermsii and Borrelia
anserina were included as outgroups.

The 16S rRNA partial sequences of I. pararicinus generated in
this study were aligned with corresponding sequences of 14
species of the I ricinus complex available in GenBank, and
published by Xu et al. (2003). The sequences of other Ixodes
species known to occur in Uruguay, namely Ixodes auritulus,
Ixodes loricatus, and Ixodes longiscutatus (Venzal et al. 2003), plus
I. urige (used as outgroup) were also included in the alignment.

Phylogenetic trees (Borrelia fla gene, and tick 165 rRNA)
were inferred by the maximum parsimony methods and were
performed with PAUP 4.0b10 software (Swofford 2002) with
1000 replicates of random-addition taxa and tree bisection
and reconnection branch swapping; all positions were equally
weighed. Bayesian analysis (tick 165 rRNA) was performed
using MrBayes v3.1.2 (Ronquist and Huelsenbeck 2003). The
tree searches employed GTR+GAMMA and proportion of
invariable sites. The first 25% of the trees from 1,000,000
generations were discarded as burn-in.

Results

Among ethanol-preserved ticks, Borrelit DNA was de-
tected by the fla-PCR in 2 (8.7%) out of 23 TC1 males, and 6
(54.5%) out of 11 TC2 males (Table 1). None of the 15 and 22
females of TC1 and TC2 ticks, respectively, contained Borrelia
DNA. All these PCR-positive ticks yielded visible amplicons
of the expected size in aragose gel by both the first and the
nested reactions targeting the fla gene. DNA sequences of 459
to 617 bp were generated from the 8 PCR-positive male ticks;
these sequences were shown to represent 5 different fla hap-
lotypes (designated as A, B, C, D, E). Haplotypes A, B, and C
differed from each other by only 1 to 2 single-nucleotide
polymorphisms (SNPs) that resulted in no amino acid change.
Similarly, haplotypes D and E differed from each other by
only 2 SNPs that also resulted in no amino acid change. On the
other hand, haplotypes A, B, and C differed from haplotypes
D and E by 18-29 nucleotide substitutions that resulted in at
least 4 amino acid changes. By BLAST analyses, haplotypes A,
B, and C were most similar (99% identity) to corresponding fla
sequences of B. bissettii DN127 (D82857, CP002746) and other
B. burgdorferi s.l. sequences (AF264893-AF264897), whereas
haplotypes D and E were most similar (97% identity) to cor-
responding fla sequences of B. burgdorferi s.s. (X69611,
AE000783, AF264879-AF264881, AF264886, AF264889).

Phylogenetic analyses inferred from fla partial sequences
showed that the 5 haplotypes (A-E) amplified from I. para-
ricinus belong to the B. burgdorferi s.1. group (Fig. 1). Haplo-
types A-C formed a single cluster that grouped within the
B. bissettii-B. carolinensis group under 100% bootstrap sup-
port, whereas haplotypes D and E segregated in a relatively
distant cluster with B. americana, however with only 50%
bootstrap support.

Attempts to isolate Borrelia organisms in culture medium
were performed with 54 TC3 adult ticks collected from cattle
and 11 free-living TC4 nymphs. Weekly examinations of
cultures by dark-field microscopy failed to demonstrate live
Borrelia through the whole incubation period of 100 days.
However, Borrelint DNA was detected by fla-PCR in culture
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Borrelia haplotypes (A, B, C, D, E) from I pararicinus ticks from Uruguay. The B. hermsii and B. anserina corresponding
sequences were used as outgroups. Numbers at nodes are support values derived from bootstrap, 1000 replicates. Numbers

in brackets are GenBank accession numbers.

media from 2 vials (1 inoculated with 5 TC3 males, and 1
inoculated with 5 TC4 nymphs) at 30, 45, and 90 days after
inoculation. In addition, new culture tubes inoculated with
passages of the 2 above PCR-positive cultures yielded Borrelia
DNA at 15 and 30 days, but not at 75 days after being inoc-
ulated. DNA sequencing of the fla-PCR products revealed that
the culture inoculated with 5 males contained B. burgdorferis.l.
haplotype A, whereas the culture inoculated with 5 nymphs
contained B. burgdorferi s.1. haplotype B (100% identity with
sequences of haplotypes A and B, respectively, detected in
TC1 ticks) (Table 1).

Samples that generated Borrelian DNA by fla PCR also gen-
erated products by both the IGS- and the rrs-PCR protocols.
DNA sequences for the IGS gene were generated from 3 TC2

ticks, whereas DNA sequences for the rrs gene were generated
from the same 3 TC2 ticks, and from 1 PCR-positive culture.
The 3 IGS sequences, designated as haplotypes F, M, and G,
corresponded to the same ticks that generated fla haplotypes
C, D, and E, respectively. While haplotypes M and G were
very similar to each other (they differed by only 2 indels), they
both differed by 11 nucleotides (94.3% similarity) from hap-
lotype F. By BLAST analysis, haplotype F (195bp) was most
similar (99% identity) to the corresponding IGS sequences of
Borrelia sp. SCW-30h (AF221673), and then 98% similar to
Borrelia sp. SCGT-10 (AF221681) and B. bissettii (EF015627);
haplotypes M (254 bp) and G (253 bp) were most similar (95—
96% identity) to Borrelin sp. SCW-30a (HMS802215) and
B. americana (HM802219).



B. burgdorferi IN URUGUAY

The 4 rrs sequences, designated as haplotypes1, J, K, and L
corresponded to the same ticks that generated fla haplotypes
B, C, D, and E, respectively. Similarly to fla analyses, these rrs
sequences also formed 2 distinct groups, 1 composed by
haplotypes I and J (100% similarity), and a second group
composed by haplotypes K and L (99.9% similarity, differing
each other by only a SNP). On the other hand, the rrs se-
quences of these groups (I and J versus K and L) were more
polymorphic, with 98.7-99.3% similarities. By BLAST anal-
ysis, haplotypes I (343bp) and J (706 bp) were closest (99—
100% identity) to B. bissettii (CP002746) and Borrelia sp.
strain Z41293 (AF091367), whereas haplotypes K (673 bp)
and L (706 bp) were closest (99% identity) to multiple se-
quences of B. americana (HM802226, HM802225, EU081288-
EU081288).

DNA sequences (410bp) of a portion of the mitochondrial
16S rRNA gene were generated for 2 TC2 I. pararicinus ticks,
corresponding to 2 males that were PCR-positive to Borrelia
(1 of the males yielded fla haplotype C, the second male

I. uriae [AF549861]

I. longisculatus [DQ061294]
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yielded fla haplotype D). Their 16S rRNA partial sequences
were identical to each other, and by BLAST analysis were
closest (95% similar) to corresponding sequences of I. affinis
from Colombia (AF549861) and the United States (AF549834),
and 93% similar to I. pararicinus from Argentina (AF549855).
Phylogenetic analyses inferred from 165 rRNA partial se-
quences confirms that the I. pararicinus tick from Uruguay be-
longs to the I. ricinus complex (Fig. 2), as its sequence grouped
with L. pararicinus from Argentina within a large cluster con-
taining only species of this species complex, including the pri-
mary vectors of Lyme disease in the Northern Hemisphere,
namely I. scapularis, I. pacificus, I. ricinus, and I. persulcatus.

DNA sequences determined in this study have been de-
posited into GenBank and given the indicated accession
numbers as follows: JX082311-JX082315 for the fla se-
quences, JX082316-JX082317 for the rrfA-rrIB 1GS se-
quences, and JX082318-JX082321 for the rrs sequences of
Borrelia haplotypes; JX082322 for the 16S rRNA sequence of
I. pararicinus.
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FIG. 2. Maximum parsimony (MP) phylogenetic tree of 16S rDNA partial sequences of ticks from the . ricinus complex, and
Ixodes ticks from Uruguay. The I. urige corresponding sequence was used as outgroup. Numbers at nodes are support values
derived from bootstrap (1000 replicates for MP/ posteriori probability for Bayesian analysis). Numbers in brackets are

GenBank accession numbers.
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Discussion

In this study, different Borrelia haplotypes were found in
ticks of the I. ricinus complex, namely I. pararicinus, from 2
different hosts and localities of Uruguay. Genetic analyses
indicate that these haplotypes represent 2 different genos-
pecies of the B. burgdorferi sl. group; 1 genospecies, re-
presented by fla haplotyes A, B, and C is phylogenetically
associated with B. bissettii, whereas the other genospecies
(represented by fla haplotyes D and E) is phylogenetically
closest to B. americana. These results were reinforced by
BLAST analyses of IGS and rrs sequences generated in this
study.

Before the present study, the only report of B. burgdorferis.l.
infecting ticks of the Southern Hemisphere referred to
B. garinii infecting the tick I. uriae infesting seabird colonies of
Campbell Island (New Zealand) and Crozet Islands (Olsen
et al. 1995, Gylfe et al. 1999). In addition, B. burgdorferi s.1.,
represented by at least 4 genotypes (including B. burgdorferi
s.s.), have been reported infecting the tick I. auritulus from
migratory birds in Canada (Morshed et al. 2005, Scott et al.
2010, 2012), which is relevant to the present study because
I. auritulus has a nearly global distribution that includes Ur-
uguay (Guglielmone et al. 2003). Indeed, the Borrelia haplo-
types detected in the present study are clearly distinct from
B. garinii (Fig. 1), and are not related to the genotypes previ-
ously reported infecting I. auritulus in Canada, because their
IGS sequences (EU019109-EU019127) diverge 5-13% with the
IGS sequences reported in the present study (data not shown).
Therefore, even though I. auritulus and I. uriae are known to
parasitize birds that migrate between the Northern and
Southern Hemispheres, none of the currently known I. aur-
itulus- or I. urine-associated B. burgdorferi s.1. genotypes were
found in the present study. These facts indicate that the Ur-
uguayan B. burgdorferi genotypes circulate in a distinct en-
zootic cycle, yet to be elucidated. In fact, our phylogenetic
analysis inferred from fla sequences suggests that the Ur-
uguayan haplotypes potentially represent 2 geographically
distinct new genospecies of the B. burgdorferi s.l., yet to be
determined by successful culture and deeper molecular
characterization.

Because we were able to detect spirochetal DNA in the
cultures for as long as 90 days after inoculation, and for at least
30 days of the passages, we conclude that we isolated
B. burgdorferi s.l. from I pararicinus ticks in BSK medium.
However, for unknown reasons, our isolates did not grow in a
sufficient number to be visualized by dark-field microscopy,
and therefore, did not establish in BSK medium. Because it is
known that strains of B. burgdorferis.1. differ in their capacity to
grow well in culture (Stanek and Reiter 2011), it is possible that
the Uruguayan Borrelia strains are more fastidious; therefore,
different growth requirements should be further tested.

It is noteworthy that all I. pararicinus ticks found to be
infected by B. burgdorferi s.I. were males or nymphs; no fe-
males were found to be infected, although this gender re-
presented the majority of all tested ticks. Because it has been
demonstrated in vitro that either deer or cattle serum com-
plement has borreliacidal effects (Kurtenbach et al. 1998),
and because the female ticks of the present study were all
collected from deer or cattle, it is possible that strains of
B. burgdorferi s.l. eventually present in female ticks before
feeding were destroyed once the ticks fed on these hosts,
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therefore precluding a successful PCR detection or isolation.
On the other hand, our detection of Borrelia in male ticks
collected from deer or cattle is supported by the fact that
Ixodes males rarely, if ever, feed on hosts under natural
conditions, although they climb on hosts to copulate with
feeding females (Sonenshine 1991).

Genetic analysis confirmed that the I. pararicinus ticks of the
present study belong to the I. ricinus complex, corroborating
our findings of B. burgdorferi s.l. in the only representative
species of this tick complex in Uruguay. Because transovarial
transmission of B. burgdorferi s.l. in Ixodes ticks is rare or
nonexistent, the infection of nymphal and adult ticks depends
on their feeding as larvae or nymphs on competent Borrelia-
reservoir hosts, which are currently known to be different
species of rodents and birds in the Northern Hemisphere
(Stanek and Reiter 2011). Because both larvae and nymphs of
L. pararicinus feed primarily on passerine birds and sigmo-
dontinae rodents in Uruguay (Venzal et al. 2005), further
studies are needed to test their reservoir competence for local
isolates of B. burgdorferi s.l1. Indeed, new ecologic studies are
needed to determine the main vertebrate hosts associated
with this I pararicinus—B. burgdorferi s.l. interaction to eluci-
date the enzootic cycle and its potential to emerge as a new
focus of Lyme borreliosis in South America.
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